

Medizinische Klinik und Poliklinik IV Neuroendokrinologie

Discrimination of pituitary neuroendocrine tumours by Raman spectroscopy

M. Pilot¹, M. Tichomirowa², L. Mombaerts³, A. Husch³, M. Mittelbronn⁴, F. Hertel⁵, F. Kleine Borgmann⁶, M. Theodoropoulou¹ ¹ Ludwig-Maximilians-Universität München, München, GERMANY ; ² Service d'endocrinologie, Centre Hospitalier du Nord, Ettelbruck, LUXEMBOURG ; ³ Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg (UL), Esch-Sur-Alzette, LUXEMBOURG ; ⁴ Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH) and National Center of Pathology (NCP), Laboratoire national de santé (LNS), Dudelange, LUXEMBOURG ; ⁵ Service National de Neurochirurgie, Centre Hospitalier de Luxembourg, INS Group, LCSB, University of Luxembourg, Luxembourg, LUXEMBOURG ; ⁶ Luxembourg Center of Neuropathology (LCNP), Luxembourg and Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg, LUXEMBOURG

Background

Samples and methods

- Current techniques to provide exact location and identification of pituitary neuroendocrine tumours (PitNETs) for surgery are imprecise (pre-operative MRI) or time-consuming (surgical pathological tissue analysis).
- Raman spectroscopy is a non-invasive, non-destructive and quick technique that can determine the biochemical composition and discriminate between tissue types (e.g. cancerous vs. healthy) without requiring tissue processing and histopathological analysis.

Aim of the study

 Obtain Raman spectra from different histological PitNET subtypes and classify using a trained classifier

Results

PitNET Raman spectra grouped according to clinical diagnosis

- 56 PitNETs from patients with:
 - Acromegaly (15: 11 somatotroph, 3 lactosomatotroph, 1 plurihormonal) (ACRO)
 - Cushing's disease (5 corticotroph) (CUSH)
 - Prolactinoma (2) (PRL)
 - Hormone inactive (34, including 1 silent corticotroph) (HI)
- 1 normal pituitary from brain donor autopsy (NP)
- 527 spot measurements (Solais[™], Synaptive[®]) with 785nm laser source - acquisition 1602 values/spectrum - wavenumber scale 314-2994cm⁻¹ - number of acquisitions per scan 30-60 exposure time 1-2s; data split in training and verification sets
- Data analysis and Statistics: T-distributed stochastic neighbour embedding (T-SNE) - trained SVM classifier; Mann-Whitney test

PitNETs with different clinical diagnoses show distinct clusters (T-SNE plot of Raman spectroscopy spot measurements)

Binary classifier achieves high accuracy distinction between different PitNET subtypes (HI vs. ACRO)

- Confusion matrix of binary classifier (numbers are patient balanced spot measurements for verification)
- 98% accuracy
- Confirms distinction predicted by T-SNE

Multiclass classifier accurately distinguishes between different PitNET and normal pituitary

- Feature importance ~ 81% for the 10 most important features in the classification of HI against active PitNET (ACRO, CUSH, PRL)
- Confusion matrix of multiclass classifier HI vs. CUSH vs. ACRO vs. NP (numbers are patient balanced spot measurements for verification)

85% accuracy

Conclusion

- Raman spectroscopy achieves very good distinction between different PitNET types and normal pituitary
- Potential for intraoperative Raman spectroscopy to determine PitNET margins and distinguish tumour from healthy pituitary tissue

Funding

Supported by the Deutsche Forschungsgemeinschaft (CRC/Transregio 205/1 to M. Theodoropoulou and M. Reincke) Fondation Cancer Luxembourg (F. Hertel, A. Husch, F. Kleine Borgmann)

Centre Hospitalier

de Luxembourg