

Volumetric BMD and bone strength on QCT-based finite element analysis are impaired in patients with Cushing's syndrome in long-term remission

Germans Trias i Pujol Hospital

MS. Batule Nallim¹, E. Soudah², L. Martel-Duguech^{3,4,5}, J. Malouf⁶, M. Puig-Domingo^{1,3,5,7}, SM. Webb^{3,4,5,7}, E. Valassi^{1,3}

¹Endocrinology and Nutrition Department, Germans Trias i Pujol Hospital and Research Institute, Badalona, Spain; ²International Centre for Numerical Methods in Engineering (CIMNE), Universitat Politècnica de Catalunya, Barcelona, Spain; ³Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); ⁴IIB-Sant Pau and Department of Endocrinology/Medicine, Hospital Sant Pau; ⁵Universidad Autónoma de Barcelona; ⁶Mineral Metabolism Unit, Hospital Sant Pau, Barcelona, Spain; ⁷ISCIII; Barcelona, Spain; Universitat Internacional de Catalunya (UIC), Barcelona, Spain

INTRODUCTION

Cortisol excess in active Cushing's syndrome (CS) is associated with bone loss and skeletal fragility. Although bone mineral density (BMD), as measured using dual-energy

To evaluate volumetric BMD and mechanical properties in patients with long-term remission of CS.

	9	57				
X-ray absorptiometry (DXA), may partly	recover within	few				
years after remission, fracture risk remains elevated.						

DESING AND METHODS

Thirty-six women with CS in remission were included. Subjects were matched by body mass index and menopausal status with 36 controls. Quantitative computed tomography (QCT) was used to assess volumetric BMD (vBMD) at total hip (TH), femoral neck (FN), trochanter (TR) and intertrochanteric (IT) as well as mechanical properties (buckling ratio, cross sectional area and average cortical thickness) at FN. A finite element model was generated from QCT images to calculate tissue stiffness and principal stress. A patient-specific sideways-fall impact was simulated using the patient mass and height.

RESULTS

 Table 1 Baseline characteristics in 36 female patients with Cushing's syndrome

 Table 2 Densitometric, volumetric, and biomechanical bone parameters in CS patients

(CS) and 36 age- and BMI-matched female controls

	CS patients	Controls	p-value
Age (years)	51 ± 15	50 ± 20	0.7150
BMI (Kg/m²)	27 ± 4	26 ± 4	0.575
Time of remission (years)	13 ± 8	-	
Pituitary adenoma (n,%)	28 (78)	-	
Adrenal Adenoma (n,%)	8 (22)	-	
Hydrocortisone replacement (n,%)	3 (8)	-	
GH replacement (n,%)	2 (5)	-	
Menopause (n,%)	21 (58)	21 (58)	0.835
Duration of menopause (months)	96 ± 61	102 ± 62	

BMI, Body Mass Index; GH growth hormone. Data are expressed as mean±SD or median (interquartile range) depending on the distribution

and healthy controls

Bone parameters	CS patients	Controls	p-value
DXA			
Total hip T-score	-0.75 ± 1.55	-1.03 ± 1.15	0.404
Total hip aBMD (mg/cm³)	0.91 ± 0.23	0.91 ± 0.11	0.955
Femoral neck T-score	-0.77 ± 0.98	-0.63 ± 1.12	0.613
Femoral neck aBMD (mg/cm³)	0.75 ± 0.09	0.81 ± 0.15	0.063
QCT			
Total hip-vBMD			
Trabecular	131.73 ± 16.39	127.79 ± 42.59	0.609
Cortical	827.89 ± 266.97	973.6 ± 117.3	0.004
Femoral neck-vBMD			
Trabecular	138.98 ± 20.93	165.28 ± 59.98	0.014
Cortical	867.8 ± 309.03	1073.177 ± 265.17	0.003
Trocantheric-vBMD			
Trabecular	130.47 ± 16.86	160.15 ± 63.99	0.016
Cortical	849.59 ± 349.91	1087.31 ± 622.19	0.46
Intertrochanteric vBMD			
Trabecular	131.56 ± 17.56	221.2 ± 239.46	0.030
Cortical	815.85 ± 282.52	931.85 ± 50.45	0.019
QCT biomechanical properties			
Cross-sectional area (cm²)	7.58 ± 1.27	7.54 ± 1.3	0.919
Avarage cortical thickness (cm)	0.24 ± 0.54	0.30 ± 0.08	0.001
Buckling ratio	6.81 ± 1.92	5.60 ± 1.61	0.006
Finite Element Analysis			
Total hip-Stiffness (Young Modulus)			
Cortical	14934.09 ± 330	16186 ± 660.08	0.03
Trabecular	288.18 ± 58.24	344.71 ± 29.07	0.009
Total hip-Max principal stress	135.28 ± 25.74	115.48 ± 21.79	0.025
Variables are expressed as mean +SD			

Figure 1 3D Stress and Stiffness Bone distribution for a control case.

Figure 2 Normalized Stress and Stiffness distribution for a longitudinal cross sectional plane of CS and control case. After adjusting for menopause, diagnosis of CS was the main predictor of all the parameters examined (p<0.05 for all correlations), except trabecular vBMD at TH.

CS female patients in remission have reduced vBMD, and impaired mechanical properties and strength regardless of the menopausal status. These abnormalities may contribute to persistently elevated fracture risk long-term after resolution of cortisol excess.